Learning Controllers for Human-robot Interaction

نویسنده

  • Eric Max Meisner
چکیده

In order for robots to assist and interact with humans, they must be socially intelligent. Social intelligence is the ability to communicate and understand meaning through social interaction. Artificial intelligence can be broadly described, as an effort to describe and simulate the property of human intelligence inside of a computational model. In most cases, this simulation happens in a vacuum. An agent, such as a robot, maintains a computational model which includes all information required to make decisions. This internal computational representation is what we consider its intellect. Information may enter this model through perception, and be expressed in the form of action. This separation of knowing and doing can be quite effective for representing certain types of intelligence. However it does not lend itself to simulating social cognition. In order to communicate socially, an agent must be able to affect change in the mental representation of other agents, as well as the physical world. However, social interaction and the creation of meaning is inherently different than interactions with the physical world. Because there are no mathematical models which describe how actions and perceptions affect the mental representations of a human, we cannot hope to build an interactive agent by directly simulating this process. For this reason, when building artificial social intelligence, we need to pay attention to prevailing theories on how humans learn. Many popular theories from cognitive science, social psychology and language development suggest that action and perception are not subordinate to mental representations. Instead, mental representations are a result of action and perception that results from an agent’s interaction with an environment and other agents. In particular, social learning theory says that the process which allows agents to understand one another happens from the ground up, starting with action and perception, and resulting in the shared mental representations, and understanding of how to affect change in the representations of others. This thesis addresses the problem of building social intelligence into robotic

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Study on Blinking and Eye Movement Detection via EEG Signals for Human-Robot Interaction Purposes Based on a Spherical 2-DOF Parallel Robot

Blinking and eye movement are one of the most important abilities that most people have, even people with spinal cord problem. By using this ability these people could handle some of their activities such as moving their wheelchair without the help of others. One of the most important fields in Human-Robot Interaction is the development of artificial limbs working with brain signals. The purpos...

متن کامل

Workspace Boundary Avoidance in Robot Teaching by Demonstration Using Fuzzy Impedance Control

The present paper investigates an intuitive way of robot path planning, called robot teaching by demonstration. In this method, an operator holds the robot end-effector and moves it through a number of positions and orientations in order to teach it a desired task. The presented control architecture applies impedance control in such a way that the end-effector follows the operator’s hand with d...

متن کامل

Design and development of ShrewdShoe, a smart pressure sensitive wearable platform

     This study introduces a wearable in-shoe system for real-time monitoring and measurement of the plantar pressure distribution of the foot using eleven sensing elements. The sensing elements utilized in ShrewdShoe have been designed in an innovative way, they are based on a barometric pressure sensor covered with a silicon coating. The presented sensing element has great linearity up to 300...

متن کامل

Evolving Robot Vision: Increasing Performance through Shaping

Automated methods for designing robot controllers based on machine-learning techniques have shown great promise when applied to simple robot tasks, but in order to ‘scale up’ to more complicated problems they will require assistance from human experts, a process that is often called ‘robot shaping’. In this paper, the difficult problem of learning how to visually track moving objects is examine...

متن کامل

Adaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot

The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...

متن کامل

A Q-learning Based Continuous Tuning of Fuzzy Wall Tracking

A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009